Dynamic response tuning of composite beams by embedded shape memory alloy actuators
نویسنده
چکیده
The thermomechanical performance of a shape memory alloy hybrid composite beam specimen is demonstrated and used in a preliminary validation study of a recently developed constitutive model and finite element formulation for analysis of such structures. A brief description of the thermoelastic formulation is given. A material system consisting of a glass/epoxy matrix with embedded Nitinol actuators was chosen for this study. Results from Nitinol material characterization testing, beam specimen fabrication processes, and base acceleration testing for measuring the dynamic response performance is presented. Selected results from the dynamic tests are shown, interpreted, and compared with predictions from the FE model. Elimination of a thermal post-buckling deflection by the activated SMA was observed. The fundamental natural frequency is shown to increase by a factor of 5.3 and the RMS displacement response is attenuated by a factor 6.4. Preliminary comparisons between predicted and measured performance is good. Discrepancies are attributable to insufficient knowledge of the matrix material properties at elevated temperature.
منابع مشابه
Characterization of Constrained Aged Niti Strips for Using In Artificial Muscle Actuators (Technical Note)
Marvelous bending/straightening effects of two-way shape memory alloy (TWSMA) help their employment in design and manufacturing of new medical appliances. Constrained ageing with bending load scheme can induce two-way shape memory effect (TWSME). Scanning electron microscope (SEM) analysis, electrical resistivity measurement (ERM) and differential scanning calorimetry (DSC) are employed to dete...
متن کاملAdaptive Tunable Vibration Absorber using Shape Memory Alloy
This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...
متن کاملNonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres
General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...
متن کاملExperimental Hysteresis Identification and Micro-position Control of a Shape-Memory-Alloy Rod Actuator
In order to exhaustively exploit the high-level capabilities of shape memory alloys (SMAs), they must be applied in control systems applications. However, because of their hysteretic inherent, dilatory response, and nonlinear behavior, scientists are thwarted in their attempt to design controllers for actuators of such kind. The current study aims at developing a micro-position control system ...
متن کاملCoupled Thermoelasticity Impact Response Analysis of Composite Plates with SMA Wires in Thermal Environments
Impact responses of rectangular composite plates with embedded shape memory alloy (SMA) wires are investigated in the present research. The plate is assumed to be placed in a thermal environment; so that in contrast to the available researches in the field, the shape memory and ferroelasticity effects have to be considered also in addition to the superelasticity. The governing equations are der...
متن کامل